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What are 
finite state 
automata?

• Computational models that can generate 
regular languages (such as those 
specified by a regular expression)

• Also used in other NLP applications that 
function by transitioning between finite 
states

• Dialogue systems
• Morphological parsing

• Singular: Finite State Automaton (FSA)
• Plural: Finite State Automata (FSAs)
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Key Components

• Finite set of states
• Start state
• Final state

• Set of transitions from one state to another
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How do FSAs work?
• For a given sequence of items (characters, words, etc.) to match, begin in 

the start state
• If the next item in the sequence matches a state that can be 

transitioned to from the current state, go to that state
• Repeat

• If no transitions are possible, stop
• If the state you stopped in is a final state, accept the sequence
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FSAs are often represented 
graphically.
• Nodes = states
• Arcs = transitions

q0 q1 q2 q3 q4

b a a

a

!
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What do we know about this FSA?

q0 q1 q2 q3 q4

b a a

a

!

• Five states
• q0 is the start state
• q4 is the final 

(accept) state
• Five transitions
• Alphabet = {a, b, !}
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Which strings could 
this FSA match?

• baa!
• baaaa!
• ba!
• baaaaaaaa!
• baaaa
• baabaa!

• https://www.google.com/s
earch?q=timer

q0 q1 q2 q3 q4

b a a

a

!
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Regex that this FSA matches: baa+!

q0 q1 q2 q3 q4

b a a

a

!
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Regex that this FSA matches: baa+!

q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
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Note: More than one FSA can correspond 
to the same regular language!

q0 q1 q2 q3 q4

b a a

a

!

q0 q1 q2 q3 q4

b a a

a

!

Test String: 
baaa!

Test String: 
baaa!
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Formal 
Definition

• A finite state automaton can be specified by 
enumerating the following properties:

• The set of states, Q
• A finite alphabet, Σ
• A start state, q0
• A set of accept/final states, F⊆Q
• A transition function or transition matrix 

between states, δ(q,i)
• δ(q,i): Given a state q∈Q and input i∈Σ, 

δ(q,i) returns a new state q’∈Q.
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Alphabets

In the previous definition, alphabet 
does not necessarily mean [a-zA-Z]!

Alphabet = finite set of possible input 
symbols

An alphabet can be a subset of 
letters (e.g., {a, b}), a combination of 
letters and other characters (e.g., {a, 
b, !}), a subset of words (e.g., {lamb, 
sheep, baa!}), etc.
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Example: FSA for Dollar Amounts

q0 q1 q2 q4 q5 q6 q7

q3

One
Two
Three
Four
Five

Six
Seven
Eight
Nine

Ten
Twenty
Thirty
Forty
Fifty

Sixty
Seventy
Eighty
Ninety

Eleven
Twelve
Thirteen
Fourteen
Fifteen

Sixteen
Seventeen
Eighteen
Nineteen

Twenty
Thirty
Forty
Fifty

Sixty
Seventy
Eighty
Ninety

One
Two
Three
Four
Five

Six
Seven
Eight
Nine

cents

dollars

One
Two
Three
Four
Five

Six
Seven
Eight
Nine

Ten
Twenty
Thirty
Forty
Fifty

Sixty
Seventy
Eighty
Ninety

Eleven
Twelve
Thirteen
Fourteen
Fifteen

Sixteen
Seventeen
Eighteen
Nineteen

Twenty
Thirty
Forty
Fifty

Sixty
Seventy
Eighty
Ninety

One
Two
Three
Four
Five

Six
Seven
Eight
Nine

cents

Accept States
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State transitions in FSAs can be 
represented using tables.

q0 q1 q2 q3 q4

b a a

a

!

b a ! <end>
q0 q1

q1

q2

q3

q4C
ur

re
nt

ly
 in

 S
ta

te

Next Item in Sequence

Go to State
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a

!
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q2
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9/3/19 Natalie Parde - UIC CS 421 28



State transitions in FSAs can be 
represented using tables.

q0 q1 q2 q3 q4

b a a

a

!

b a ! <end>
q0 q1 L L L

q1 L q2

q2

q3

q4C
ur

re
nt

ly
 in

 S
ta

te

Next Item in Sequence

Go to State

9/3/19 Natalie Parde - UIC CS 421 29



State transitions in FSAs can be 
represented using tables.

q0 q1 q2 q3 q4

b a a

a

!
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State transitions in FSAs can be 
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q0 q1 q2 q3 q4

b a a

a

!

b a ! <end>
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q2 L q3 L L

q3 L q3

q4C
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nt
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State transitions in FSAs can be 
represented using tables.

q0 q1 q2 q3 q4

b a a

a

!

b a ! <end>
q0 q1 L L L

q1 L q2 L L

q2 L q3 L L

q3 L q3 q4

q4C
ur

re
nt

ly
 in

 S
ta

te

Next Item in Sequence

Go to State
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State transitions in FSAs can be 
represented using tables.

q0 q1 q2 q3 q4

b a a

a

!

b a ! <end>
q0 q1 L L L

q1 L q2 L L

q2 L q3 L L

q3 L q3 q4 L

q4 L L L JC
ur

re
nt

ly
 in

 S
ta

te

Next Item in Sequence

Accept!
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State transition tables simplify the 
process of determining whether your input 
will be accepted by the FSA. 
• For a given sequence of items to match, begin in the start 

state with the first item in the sequence
• Consult the table …is a transition to any other state 

permissible with the current item?
• If so, move to the state indicated by the table
• If you make it to the end of your sequence and to a final state, 

accept
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Formal Algorithm
index ← beginning of sequence
current_state ← initial state of FSA
loop:

if end of sequence has been reached:
if current_state is an accept state:

return accept
else:

return reject
else if transition_table[current_state, sequence[index]] is empty:

return reject

else:
current_state ← transition_table[current_state, sequence[index]]
index ← index + 1

end

9/3/19 Natalie Parde - UIC CS 421 35



Deterministic vs. Non-Deterministic 
FSAs

Deterministic FSA: At 
each point in processing 
a sequence, there is one 
unique thing to do (no 
choices!)

Non-Deterministic 
FSA: At one or more 
points in processing a 
sequence, there are 
multiple permissible next 
steps (choices!)
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Deterministic or Non-Deterministic?

q0 q1 q2 q3 q4

b a a

a

!

q0 q1 q2 q3 q4

b a a

a

!
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Deterministic or Non-Deterministic?

q0 q1 q2 q3 q4

b a a

a

!

q0 q1 q2 q3 q4

b a a

a

!

If input is a, do this

If input is !, do this
Deterministic!
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Deterministic or Non-Deterministic?

q0 q1 q2 q3 q4

b a a

a

!

q0 q1 q2 q3 q4

b a a

a

!

If input is a, do this

If input is !, do this
Deterministic!

If input is a, do ?Non-Deterministic!
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Every non-deterministic FSA can be 
converted to a deterministic FSA.

• This means that both are equally powerful!
• Deterministic FSAs can accept as many languages as non-deterministic 

ones
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Non-Deterministic 
FSAs: How to check 
for input acceptance?

• Two approaches:
1. Convert the non-deterministic 

FSA to a deterministic FSA and 
then check that version

2. Manage the process as a state-
space search
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Non-
Deterministic 
FSA Search 
Assumptions

There exists at least one path through 
the FSA for an item that is part of the 
language defined by the machine

Not all paths directed through the FSA 
for an accept item lead to an accept 
state

No paths through the FSA lead to an 
accept state for an item not in the 
language
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Non-Deterministic FSA Search 
Assumptions

SUCCESS = PATH IS FOUND 
FOR A GIVEN ITEM THAT ENDS 

IN AN ACCEPT

FAILURE = ALL POSSIBLE PATHS 
FOR A GIVEN ITEM LEAD TO 

FAILURE
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Example: Non-Deterministic FSA 
Search

q0 q1 q2 q3 q4

b a a

a

!

Test Input: baaa!
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Non-
Deterministic 

FSA Search

• States in the search space are pairings of 
sequence indices and states in the FSA

• By keeping track of which states have and 
have not been explored, we can 
systematically explore all the paths through 
an FSA given an input
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Compositional 
FSAs

• You can apply set operations to any FSA
• Union
• Concatenation
• Negation

• For non-deterministic FSAs, first 
convert to a deterministic FSA

• Intersection
• To do so, you may need to utilize an ϵ 

transition
• ϵ transition: Move from one state to 

another without consuming an item from 
the input sequence
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Summary: Finite State Automata

• FSAs are computational models that describe regular languages
• To determine whether an input item is a member of an FSA’s language, you can process it 

sequentially from the start to (hopefully) the final state
• State transitions in FSAs can be represented using tables
• FSAs can be either deterministic or non-deterministic

9/3/19 Natalie Parde - UIC CS 421 56



What are 
finite state 
transducers?

Finite State Transducer (FST): A type 
of FSA that describes mappings 
between two sets of items

This means that FSTs recognize or 
generate pairs of items

FSAs can be converted to FSTs by 
labeling each arc with two items (e.g., 
a:b for an input of a and and an output 
of b)
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Example: Simple FST

Start Finalq0 q1

b:aaa:b b:ϵ

b:b

a:ba
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Formal 
Definition

• A finite state transducer can be specified by 
enumerating the following properties:

• The set of states, Q
• A finite input alphabet, Σ
• A finite output alphabet, Δ
• A start state, q0
• A set of accept/final states, F⊆Q
• A transition function or transition matrix 

between states, δ(q,i)
• An output function giving the set of 

possible outputs for each state and 
input, σ(q,i)

• δ(q,i): Given a state q∈Q and input i∈Σ, 
δ(q,i) returns a new state q’∈Q.
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Formal 
Properties

Composition: Letting T1 be an FST 
from I1 to O1 and letting T2 be an 
FST from I2 to O2, the two FSTs can 
be composed such that the resulting 
FST maps directly from I1 to O2.

Inversion: Letting T be an FST that 
maps from I to O, its inversion (T-1) 
will map from O to I.

q0

a:b

q1

a:b

∘ q0

b:c

q1

b:c

= q0

a:c

q1

a:c
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Deterministic 
vs. Non-
Deterministic 
FSTs

Just like FSAs, FSTs can be non-
deterministic …one input can be 
translated to many possible outputs!

Unlike FSAs, not all non-deterministic 
FSTs can be converted to 
deterministic FSTs

FSTs with underlying deterministic FSAs 
(at any state, a given input maps to at 
most one transition out of the state) are 
called sequential transducers
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Examples: Non-Deterministic and 
Sequential Transducers

q0 q1

b:aaa:b b:ϵ

b:b

a:ba

Non-Deterministic

q0 q1

a:b b:ϵ

b:b

a:ba
Sequential
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Remember 
morphology?

• Morphemes:
• Small meaningful units that make up 

words
• Stems: The core meaning-bearing units
• Affixes: Bits and pieces that adhere to 

stems and add additional information
• -ed
• -ing
• -s

• Morphological parsing is a classic use case 
for FSTs

9/3/19 Natalie Parde - UIC CS 421 63



Morphological 
Parsing

• The task of recognizing the 
component morphemes of words 
(e.g., foxes → fox + es) and building 
structured representations of those 
components

9/3/19 Natalie Parde - UIC CS 421 64



Why is 
morphological 
parsing 
necessary?

• Example: -ing attaches to almost every verb, 
including brand new words
• “Why are you Instagramming that?”

Morphemes can be productive

• Uygarlastiramadiklarimizdanmissinizcasina
• Uygar ‘civilized’ + las ‘become’ 
• + tir ‘cause’ + ama ‘not able’ 
• + dik ‘past’ + lar ‘plural’
• + imiz ‘p1pl’ + dan ‘abl’ 
• + mis ‘past’ + siniz ‘2pl’ + casina ‘as if’ 

Some languages are very 
morphologically complex
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Finite State 
Morphological 

Parsing
Goal: Take input surface realizations 

and produce morphological parses as 
output

Surface Text Morphological 
Parse

cats cat +N +PL

cat cat +N +SG

cities city +N +PL

geese goose +N +PL

goose goose +N +SG

merging merge +V +PresPart

caught catch +V +Past
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Example Morphological Lexicon

q0 q1

q2

q3

irreg-past-verb-form

reg-verb-stem
past participle (-ed)

past (-ed)

reg-verb-stemirreg-verb-stem

present participle (-ing)

3sg (-s)
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Finite State Morphological Parsing 
• Two sets of items:

• Surface form (input text)
• Lexical form (morphological parse)

cats cat +N +PL
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Finite State Morphological Parsing
reg-noun irreg-pl-noun irreg-sg-noun
fox g o:e o:e s e goose
cat

q0

q1reg-noun

q2

q3

q4

q5

q6

q7

irreg-sg-noun

irreg-pl-noun

ϵ:+N

ϵ:+N

ϵ:+N

^s#:+PL

#:+SG

#:+SG

#:+PL
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Finite State Morphological Parsing

f:f
o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N
^s#:+PL
#:+SG

ϵ:+N

ϵ:+N

#:+SG

#:+PL

reg-noun irreg-pl-noun irreg-sg-noun
fox g o:e o:e s e goose
cat
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Summary: 
Finite State 

Transducers

• FSTs are FSAs that describe mappings 
between two sets

• Although all non-deterministic FSAs can be 
converted to deterministic versions, all non-
deterministic FSTs cannot

• FSTs with underlying deterministic FSAs are 
called sequential transducers

• FSTs are particularly useful for 
morphological parsing
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What are 
Hidden 
Markov 
Models 
(HMMs)?

Probabilistic generative models for 
sequences

Make predictions based on an 
underlying set of hidden states
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How does sequence 
labeling differ from other 
types of classification?

• A lot of machine learning addresses 
the problem of classifying instances 
into a predefined number of classes

• Decision Trees
• Naïve Bayes
• Logistic Regression
• (Some) Neural Networks
• Support Vector Machines

Spam Not Spam

Dear Esteemed Professor Dr. Natalie Parde,
I am interested in applying to University of Illinois – Chicago for a Ph.D.
in Computer Science in the area of Artificial Intelligence and Natural 
Language Processing.  I read your recent paper “Enriching Neural 
Models with Targeted Features for Dementia Detection” and see that 
you are interested in Neural Models and Dementia Detection….
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Standard 
Classification 
Assumption: 
Individual 
cases are 
disconnected 
and 
independent.

However, many NLP problems do not satisfy 
this assumption.

Instead, they involve many interconnected 
decisions, each of which resolve different 
ambiguities despite being mutually dependent.

For these problems, different learning and 
inference techniques are needed!
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Sequence Labeling
• Many NLP problems can be viewed as sequence labeling tasks.
• Objective: Find the label for the next item, based on the labels 

of other items in the sequence. 

Give me a break! Did the window break?

verb

pronoun

determiner

noun

verb

determiner

noun

verb
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Applications 
that can 

benefit from 
sequence 
labeling?

• Named entity recognition
• Semantic role labeling
• Genome analysis

Natalie Parde works at the University of Illinois at 
Chicago and lives in Chicago, Illinois.

person organization

location

Natalie drove for 15 hours from Dallas to Chicago in her 
trusty hail-damaged Honda Accord.

agent source destination

instrument
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Probabilistic 
Sequence Models

• Allow uncertainties to be integrated 
over multiple, interdependent 
classifications

• These classifications collectively 
determine the most likely global 
assignment

• Two standard models:
• Hidden Markov Models
• Conditional Random Fields
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What are Markov Models?
• Finite state automata with probabilistic state transitions
• Markov Property: The future is independent of the past, given 

the present.
• In other words, the next state only depends on the current state …it is 

independent of previous history.
• Also referred to as Markov Chains
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Sample Markov Model

q0 q4

q2

q1 q3

.1

.2
.7

.2

.1

.4 .3

.1
.2

.7

.1

.3

.2

.4

9/3/19 Natalie Parde - UIC CS 421 79



Sample Markov Model

q0 q4

q2

q1 q3

.1

.2
.7

.2

.1

.4 .3

.1
.2

.7

.1

.3

.2

.4

P(q3 q2 q1 q4)
= .2 * .1 * .2 * .3
= .0012
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Hidden Markov 
Models

• Probabilistic generative models for 
sequences

• Assume an underlying set of hidden 
(unobserved) states in which the 
model can be

• Assume probabilistic transitions 
between states over time

• Assume probabilistic generation of 
items (e.g., tokens) from states
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Sample Hidden Markov Model

q0 q4

q2

q1 q3

.1

.2
.7

.2

.1

.4 .3

.1
.2

.7

.1

.3

.2

.4

𝑃(𝑥|𝑞))
𝑃(𝑦|𝑞))
𝑃(𝑧|𝑞))

=
.2
.4
.4

𝑃(𝑥|𝑞1)
𝑃(𝑦|𝑞1)
𝑃(𝑧|𝑞1)

=
.1
.4
.5

𝑃(𝑥|𝑞4)
𝑃(𝑦|𝑞4)
𝑃(𝑧|𝑞4)

=
.7
.1
.2
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Formal 
Definition

• A hidden Markov model can be specified by 
enumerating the following properties:

• The set of states, Q
• A transition probability matrix, A, where each aij

represents the probability of moving from state i
to state j, such that ∑78)9 𝑎;7 = 1 ∀𝑖

• A sequence of T observations, O, each drawn 
from a vocabulary V = v1, v2, …, vV

• A sequence of observation likelihoods, B, also 
called emission probabilities, each expressing 
the probability of an observation ot being 
generated from a state i

• A start state, q0, and final state, qF, that are not 
associated with observations, together with 
transition probabilities out of q0 and into qF
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Sample Hidden Markov Model

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4
B1

𝑃(𝑥|𝑞))
𝑃(𝑦|𝑞))
𝑃(𝑧|𝑞))

=
.2
.4
.4

B2
𝑃(𝑥|𝑞1)
𝑃(𝑦|𝑞1)
𝑃(𝑧|𝑞1)

=
.1
.4
.5

B3
𝑃(𝑥|𝑞4)
𝑃(𝑦|𝑞4)
𝑃(𝑧|𝑞4)

=
.7
.1
.2

O = x, y, z
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Corresponding Transition Matrix

q0 q1 q2 q3 q4
q0 N/A .7 .1 .2 N/A

q1 N/A .1 .4 .2 .3

q2 N/A .2 N/A .7 .1

q3 N/A .2 .1 .3 .4

q4 N/A N/A N/A N/A N/A
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Can we use HMMs 
to generate text?

• Sure!
• More generally, you can generate a 

sequence of T observations: O = o1, 
o2, …, oT

Begin in the start state

For t in [0, …, T]:

Randomly select a new state based on the 
transition distribution for the current state

Randomly select an observation from the new 
state based on the observation distribution for 
that state
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = .4

the = .3, her = .1, 
my = .3, Sarah’s = .3

laughed = .5, ate = .2, 
slept = .3
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = .4

the = .3, her = .1, 
my = .3, Sarah’s = .3

laughed = .5, ate = .2, 
slept = .3
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = .4

the = .3, her = .1, 
my = .3, Sarah’s = .3

laughed = .5, ate = .2, 
slept = .3
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = .4

the = .3, her = .1, 
my = .3, Sarah’s = .3

laughed = .5, ate = .2, 
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = 
.4

the = .3, her = .1, 
my = .3, Sarah’s = .3

laughed = .5, ate = .2, 
slept = .3
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = 
.4

the = .3, her = .1, 
my = .3, Sarah’s = .3

laughed = .5, ate = .2, 
slept = .3
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = 
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the = .3, her = .1, 
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = 
.4

the = .3, her = .1, 
my = .3, Sarah’s = .3

laughed = .5, ate = .2, 
slept = .3

my unicorn laughed
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Three Fundamental 
HMM Problems

• Observation Likelihood: How likely is a 
particular observation sequence to 
occur?

• Decoding: What is the best sequence of 
hidden states for an observed 
sequence?

• What is the best sequence of labels 
for our test data?

• Learning: What are the transition 
probabilities and observation likelihoods 
that best fit the observation sequence 
and HMM states?

• How do we empirically fit our 
training data?
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Observation 
Likelihood

• Given a sequence of observations and an 
HMM, what is the probability that this 
sequence was generated by the model?

• Allows the HMM to be used as a language 
model: A formal probabilistic model of a 
language that assigns a probability to each 
string by saying how likely that string was to 
have been generated by the language.

• Useful for two tasks:
• Sequence classification
• Selecting the most likely sequence
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Sequence 
Classification

• Assuming an HMM is available for every 
possible class, what is the most likely class 
for a given observation sequence?

• Which HMM is most likely to have 
generated the sequence?

• HMMs are commonly used in automated 
speech recognition (ASR) for this purpose

• Given a set of sounds, what is the most 
likely word?
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Most Likely 
Sequence

• Of two or more possible sequences, which 
one was most likely generated by a given 
HMM?

• Also useful for speech recognition
• Rank alternative word sequence 

interpretations
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How can we compute 
the observation 

likelihood?

• Naïve Solution:
• Consider all possible state sequences, 

Q, of length T that the model, 𝜆, could 
have traversed in generating the given 
observation sequence, O

• Compute the probability of a given state 
sequence from A, and multiply it by the 
probability of generating the given 
observation sequence for that state 
sequence

• P(O,Q | 𝜆) = P(O | Q, 𝜆) * P(Q | 𝜆)
• Repeat for all possible state sequences, 

and sum over all to get P(O | 𝜆)
• But, this is computationally complex!

• O(TNT)
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How can we compute 
the observation 

likelihood?

• Efficient Solution:
• Forward Algorithm: Dynamic programming 

algorithm that computes the observation 
probability by summing over the probabilities of all 
possible hidden state paths that could generate 
the observation sequence.

• Implicitly folds each of these paths into a single 
forward trellis

• Why does this work?
• Markov assumption (the probability of being in any 

state at a given time t only relies on the probability 
of being in each possible state at time t-1).

• Works in O(TN2) time!
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Sample Problem
• It is 2799 and you are a climatologist studying the history of global 

warming
• Unfortunately, you have no records of the weather in Baltimore for 

the summer of 2007, although you do know how likely it was in 
general to move from a hot day to a cold day and so forth at that time

• Fortunately, a major breakthrough occurs: you find Jason Eisner’s 
diary, which lists how many ice cream cones he ate every day that 
summer

• You decide to use those observations to estimate whether each day 
in a three-day sequence was hot or cold

• Day 1: 3 ice cream cones
• Day 2: 1 ice cream cone
• Day 3: 3 ice cream cones
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Corresponding HMM

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
𝑃(1|ℎ𝑜𝑡))
𝑃(2|ℎ𝑜𝑡))
𝑃(3|ℎ𝑜𝑡))

=
.2
.4
.4

B2
𝑃(1|𝑐𝑜𝑙𝑑))
𝑃(2|𝑐𝑜𝑙𝑑))
𝑃(3|𝑐𝑜𝑙𝑑))

=
.5
.4
.1
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How do you compute your forward 
probabilities?
• Let 𝛼;(𝑗) be the probability of being in state j after seeing the 

first t observations, given your HMM 𝜆
• 𝛼;(𝑗) is computed by summing over the probabilities of every 

path that could lead you to this cell
• 𝛼; 𝑗 = 𝑃 𝑜), 𝑜1 …𝑜J, 𝑞J = 𝑗 𝜆 = ∑;8)K 𝛼JL)(𝑖)𝑎;7𝑏7(𝑜J)

• 𝑞J = 𝑗 is the probability that the tth state in the sequence of states is state j
• 𝛼JL)(𝑖): The previous forward path probability from the previous time 

step
• 𝑎;7: The transition probability from previous state qi to current state qj
• 𝑏7(𝑜J): The state observation likelihood of the observed item ot given 

the current state j
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Formal Algorithm
create a probability matrix forward[N+2,T]

for each state q in [1, …, N] do:

forward[q,1] ← a0,q * bq(o1)

for each time step t from 2 to T do:

for each state q from 1 to N do:

forward[q,t] ←∑NO8)
K 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑞S, 𝑡 − 1 ∗ 𝑎NO,N ∗ 𝑏V(𝑜J)

forward[qF,T] ←∑N8)K 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑞, 𝑇 ∗ 𝑎V,NX
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Forward Step

Ot-2 Ot-1 Ot Ot+1

q1

q2

qN

…

𝛼t-2(1)

𝛼t-2(2)

𝛼t-2(N)

q1

q2

qN

…
𝛼t-2(1)

𝛼t-2(2)

𝛼t-2(N)

qj

𝛼t-2(j) = ∑; 𝛼JL)(𝑖)𝑎;7𝑏7(𝑜J)

𝑏7(𝑜J)

𝑎K7

𝑎17

𝑎)7

q1

q2

qN

…
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Forward Trellis

3 1 3

c

h

end

start

c

h

c

startq0

q1

q2

qF

o1 o2 o3

end

h

start start

c

h

end end
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hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'()
!(2|ℎ&'()
!(3|ℎ&'()

= 	
.2
.4
.4

B2
!(1|0&12()
!(2|0&12()
!(3|0&12()

= 	
.5
.4
.1



Forward Trellis

3 1 3

c

h

end

start

c

h

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8 
* .

4

h

start start

c

h

end end
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Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(1) = .02

𝛼1(2) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8 
* .

4

h

start start

c

h

end end
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Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(1) = .02

𝛼1(2) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8 
* .

4

h
P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end
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Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(1) = .02

𝛼1(2) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8 
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end
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Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(1) = .02

𝛼1(2) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8 
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end

𝛼2(1) = .32 * .15 + .02 * .30 = 0.54

𝛼2(2) = .32 * .14 + .02 * .08 = .0464
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Forward Trellis

3 1 3

c

h

end

start

c

h
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startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
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art
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(3|
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.8 
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4

h

P(c|c) * P(1|c)
.6* .5
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(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝛼2(1) = 0.54

𝛼2(2) = .0464

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1
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Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(1) = .02

𝛼1(2) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8 
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝛼2(1) = 0.54

𝛼2(2) = .0464

start

c
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end end

P(c|c) * P(3|c)
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P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

𝛼3(2) = .0464 * .28 + .54 * .16 = .09939

𝛼3(1) = .0464 * .03 + .54 * .06 = .03379

9/3/19 Natalie Parde - UIC CS 421 113

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'()
!(2|ℎ&'()
!(3|ℎ&'()

= 	
.2
.4
.4

B2
!(1|0&12()
!(2|0&12()
!(3|0&12()

= 	
.5
.4
.1



Decoding

• Given an observation sequence and an 
HMM, what is the best hidden state 
sequence?

• How do we choose a state sequence 
that is optimal in some sense (e.g., best 
explains the observations)?

• Very useful for sequence labeling!
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Decoding

Naïve Approach:
• For each hidden state sequence Q, compute P(O|Q)
• Pick the sequence with the highest probability

However, this is computationally inefficient!
• O(NT)
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How can we 
decode 

sequences 
more 

efficiently?

• Viterbi Algorithm
• Another dynamic programming 

algorithm
• Uses a similar trellis to the Forward 

algorithm
• Viterbi time complexity: O(N2T)
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Viterbi Intuition
• Goal: Compute the joint probability of the observation sequence 

together with the best state sequence
• So, recursively compute the probability of the most likely 

subsequence of states that accounts for the first t
observations and ends in state qj.

• 𝑣J 𝑗 = max
N],N^,…,N_`^

𝑃 𝑞a, 𝑞), … , 𝑞JL), 𝑜), … , 𝑜J, 𝑞J = 𝑞7|𝜆

• Also record backpointers that subsequently allow you to 
backtrace the most probable state sequence

• 𝑏𝑡J(𝑗) stores the state at time t-1 that maximizes the probability that the 
system was in state qj at time t, given the observed sequence
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Formal Algorithm
create a path probability matrix Viterbi[N+2,T]

for each state q in [1,…,N] do:
Viterbi[q,1] ← a0,q * bq(o1)
backpointer[q,1] ← 0

for each time step t in [2,…,T] do:
for each state q in [1,…,N] do:

𝑣𝑖𝑡𝑒𝑟𝑏𝑖[𝑞, 𝑡] ← max
NO∈[),…,K]

𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞S, 𝑡 − 1 ∗ 𝑎NO,N ∗ 𝑏N(𝑜J)

𝑏𝑎𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑒𝑟[𝑞, 𝑡] ← argmax
NO∈[),…,K]

𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞S, 𝑡 − 1 ∗ 𝑎NO,N

𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞k, 𝑇 ← max
NO∈ ),…,K

𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞, 𝑇 ∗ 𝑎N,NX
𝑏𝑎𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑒𝑟 𝑞k, 𝑇 ← argmax

NO∈ ),…,K
𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞, 𝑇 ∗ 𝑎N,NX
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Seem familiar?
• Viterbi is basically the forward 

algorithm + backpointers, and 
substituting a max function for the 
summation operator
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Viterbi Trellis
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Viterbi Trellis
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Viterbi Trellis
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Viterbi Trellis

3 1 3

c

h

end

start

c

h

𝑣1(1) = .02

𝑣1(2) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8 
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end

9/3/19 Natalie Parde - UIC CS 421 124

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'()
!(2|ℎ&'()
!(3|ℎ&'()

= 	
.2
.4
.4

B2
!(1|0&12()
!(2|0&12()
!(3|0&12()

= 	
.5
.4
.1



Viterbi Trellis
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Viterbi Trellis
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Viterbi Backtrace
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Learning

• If we have a set of observations, can we 
learn the parameters (transition probabilities 
and observation likelihoods) directly?

3 1 3 
2 1 3 
3 3 3 
3 2 2 
1 1 2
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Forward-Backward Algorithm

• Special case of expectation-maximization (EM) algorithm
• Also known as the Baum-Welch algorithm
• Input:

• Unlabeled sequence of observations, O
• Vocabulary of hidden states, Q

• Example:
• O = {3, 1, 3}
• Q = {H, C}
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How would 
this work 

with 
observable 

Markov 
models?

• Run the model on observation sequence O
• Since it’s not hidden, we know which states 

we went through, and therefore which 
transitions and observations were used

• Given that information:
• B = {bj(ot)}: Since every state can only 

generate one observation symbol, 
observation likelihoods are all 1.0

• A = {aij}: 𝑎;7 =
m(;→7)

∑o∈p m(;→N)
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Extending 
this 

intuition to 
HMMs….

• We can’t compute the counts directly from 
observed sequences

• Instead, we:
• Iteratively estimate the counts

• Start with base estimates for aij and 
bj, and iteratively improve those 
estimates

• Get estimated probabilities by:
• Computing the forward probability for 

an observation
• Dividing that probability mass among 

all the different paths that contributed 
to this forward probability
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Backward 
Algorithm

• We define the backward probability 
as follows:

• 𝛽J 𝑖 = 𝑃(𝑜Jr), 𝑜Jr1, … , 𝑜s|𝑞J = 𝑖, 𝜆)

• This is the probability of generating 
partial observations from time t+1 
until the end of the sequence, given 
that the HMM is in state i at time t
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Backward Step
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Re-Estimating aij

• We re-estimate aij as follows:
• aij’ = expected number of transitions from state i to state j, divided by 

expected number of transitions from state I

• More formally, we first define 𝜉 as the probability of being in state i at time t and 
state j at time t+1, given the observation sequence and the HMM:

• 𝜉 𝑖, 𝑗 = 𝑃(𝑞J = 𝑖, 𝑞Jr) = 𝑗|𝑂, 𝜆)
• To compute 𝜉, we first define not-quite- 𝜉 as a very similar probability with 

different conditioning of O:
• not-quite-𝜉 𝑖, 𝑗 = 𝑃(𝑞J = 𝑖, 𝑞Jr) = 𝑗, 𝑂|𝜆)
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Re-Estimating aij

• From not-quite- 𝜉, we can use Bayes rule (𝑃 𝑋 𝑌, 𝑍 = y(z,{||)
y({||)

) 
to compute 𝜉:

• 𝜉J 𝑖, 𝑗 = not−quite−�_(;,7)
y(�|�)

• This ends up being equivalent to:
• 𝜉J 𝑖, 𝑗 =

�_(;)�����(�_�^)�_�^(7)
��(K)

• Finally, we can use this then to re-estimate aij:
• 𝑎′;7 =

∑_�^�`^ �_(;,7)
∑_�^�`^ ∑��^

� �_(;,7)

9/3/19 Natalie Parde - UIC CS 421 139



Re-Estimating Observation Likelihood
• We re-estimate bj as follows:

• bj’(vk) = expected number of times in state j and observing vocabulary 
symbol vk, divided by the expected number of times in state j

• Letting 𝛾J(𝑗) represent the probability of being in state j at time t, we can 
formally define the re-estimation as:

• 𝑏7S 𝑣� =
∑_�^ �._.�_���
� �_(7)
∑_�^� �_(7)
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Forward-Backward Algorithm
initialize A and B
iterate until convergence:

# Expectation Step
compute 𝛾J(𝑗) for all t and j
compute 𝜉J 𝑖, 𝑗 for all t, i, and j

# Maximization Step
recompute aij
recompute bj(vk)
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Summary: 
Hidden 
Markov 
Models

• HMMs are probabilistic generative models for sequences

• They make predictions based on underlying hidden states
• Three fundamental HMM problems include:

• Computing the likelihood of a sequence of observations
• Determining the best sequence of hidden states for an 

observed sequence
• Learning HMM parameters given an observation 

sequence and a set of hidden states
• Observation likelihood can be computed using the forward 

algorithm
• Sequences of hidden states can be decoded using the Viterbi 

algorithm

• HMM parameters can be learned using the forward-backward 
algorithm
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